
Interactive
Graph Analytics
with Spark
A talk by Daniel Darabos about the
design and implementation of the
LynxKite analytics application

About LynxKite
Analytics web application

AngularJS + Play! Framework + Apache Spark

Each LynxKite “project” is a graph

Graph operations mutate state
– Typical big data workload

– Minutes to hours

Visualizations
– Few seconds

The topic of this talk

Idea 1:

Avoid processing unused attributes

Column-based attributes
type ID = Long

case class Edge(src: ID, dst: ID)

type VertexRDD = RDD[(ID, Unit)]

type EdgeRDD = RDD[(ID, Edge)]

type AttributeRDD[T] = RDD[(ID, T)]

// Vertex attribute or edge attribute?
// Could be either!

Column-based attributes
Can process just the attributes we need

Easy to add an attribute

Simple and flexible
– Edges between vertices of two different graphs

– Edges between edges of two different graphs

A lot of joining

Idea 2:

Make joins fast

Co-located loading
Join is faster for co-partitioned RDDs

– Spark only has to fetch one partition

Even faster for co-located RDDs
– The partition is already in the right place

When loading attributes we make a seemingly
useless join that causes two RDDs to be co-located

Co-located loading
val attributeRDD =
 sc.loadObjectFile[(ID, T)](path)

Co-located loading
val rawRDD =
 sc.loadObjectFile[(ID, T)](path)

val attributeRDD =
 vertexRDD.join(rawRDD).mapValues(_._2)

Co-located loading
val rawRDD =
 sc.loadObjectFile[(ID, T)](path)

val attributeRDD =
 vertexRDD.join(rawRDD).mapValues(_._2)

attributeRDD.cache

Scheduler delay
What's the ideal number of partitions for speed?

At least N partitions for N cores, otherwise some
cores will be wasted.

But any more than that just wastes time on scheduling
tasks.

sc.parallelize(1 to 1000, n).count

20 40 60 80 100
0

100

200

300

400

Number of partitions

M
ill

is
ec

on
ds

Scheduler delay

GC pauses
Can be tens of seconds on high-memory machines

Bad for interactive experience

Need to avoid creating big objects

GC pauses

sc.parallelize(1 to 10000000, 1).cache.count

0

250

500

750

1000

M
ill

is
e

co
nd

s

Sorted RDDs
Speeds up the last step of the join

The insides of the partitions are kept sorted

Merging sorted sequences is fast

Doesn't require building a large hashmap

10 × speedup + GC benefit
– 2 × if cost of sorting is included

– sorting cost is amortized across many joins

Benefits other operations too (e.g. distinct)

Sorted RDDs
Join performance on 4 partitions

normal join

sorted
RDD join

1500000 3000000 4500000 6000000 7500000
0

2500

5000

7500

10000

RDD rows

M
ill

is
e

co
nd

s

Idea 3:

Do not read/compute all the data

Are all numbers positive?
def allPositive(rdd: RDD[Double]): Boolean =

 rdd.filter(_ > 0).count == rdd.count

// Terrible. It executes the RDD twice.

Are all numbers positive?
def allPositive(rdd: RDD[Double]): Boolean =

 rdd.filter(_ <= 0).count == 0

// A bit better,
// but it still executes the whole RDD.

Are all numbers positive?
def allPositive(rdd: RDD[Double]): Boolean =

 rdd.mapPartitions {

 p => Iterator(p.forall(_ > 0))

 }.collect.forall(_ == true)

// Each partition is only processed up to
// the first negative value.

Are all numbers positive?
def allPositive(rdd: RDD[Double]): Boolean =

 rdd.mapPartitions {

 p => Iterator(p.forall(_ > 0))

 }.collect.forall(identity)

// Each partition is only processed up to
// the first negative value.

Prefix sampling
Partitions are sorted by the randomly assigned ID

Taking the first N elements is an unbiased sample

Lazy evaluation means the rest are not even
computed

Used for histograms and bucketed views

Idea 4:

Lookup instead of filtering for small key sets

Restricted ID sets
Cannot use sampling when showing 5 vertices

Hard to explain why showing 5 million is faster

Partitions are already sorted

We can use binary search to look up attributes

Put partitions into arrays for random access

Restricted ID sets

Summary
Column-oriented attributes

Small number of co-located, cached partitions

Sorted RDDs

Prefix sampling

Binary search-based lookup

Backup slides

Comparison with GraphX
Benchmarked connected components

Big data payload (not interactive)

Speed dominated by number of shuffle stages

Same number of shuffles ⇒ same speed
– Despite simpler data structures in LynxKite

Better algorithm in LynxKite ⇒ fewer shuffles
– From “A Model of Computation for MapReduce”

Benchmarked without short-circuit optimization

Connected component search

GraphX

LynxKite
no shortcut

LynxKite

200 450 700 950 1200
0

4000

8000

12000

16000

Number of edges

M
ill

is
e

co
n

ds

Comparison with GraphX

Connected component search

GraphX

LynxKite
no shortcut

LynxKite

10000 35000 60000 85000 110000
0

15000

30000

45000

60000

Number of edges

M
ill

is
e

co
n

ds

Comparison with GraphX

