Interactive
Graph Analytics

with Spark

A talk by Daniel Darabos about the
design and implementation of the
Spark LynxKite analytics application

summit2o

About LynxKite

Analytics web application
AngulardS + Play! Framework + Apache Spark
Each LynxKite “project” is a graph

Graph operations mutate state

— Typical big data workload
— Minutes to hours

Visualizations
Sogik. . @ The topic of this talk

- Few seconds

&xﬁ?
summit2o1s

z .

Airline routes i

8k 67k

From http://openflights.org/data.html

graph
vertices

alt| fitter
city filter

country filter

Add constant edge attribute

Add constant vertex attribute

Add gaussian vertex attribute

Add rank attribute

Add reversed edges

Aggregate edge atiribute globally
Aggregate edge atiribute to vertices

Aggregate on neighbors

Aggregate vertex attribute globally

Centrality
Clustering coefficient

Combine segmentations

Other

United States

Canada

Germany

Australia

-108

-36

108

180

ldea 1:

Avoid processing unused attributes

Spoﬁzz
summit201s

|

Column-based attributes

type 1D = Long

case class Edge(src: ID, dst: 1ID)

type VertexRDD = RDD[(ID, Unit)]

type EdgeRDD = RDD[(ID, Edge)]

type AttributeRDD[T] = RDD[(ID, T)]

// Vertex attribute or edge attribute?
// Could be either!

S‘s’u%rml too15

|

Column-based attributes

Can process just the attributes we need
Easy to add an attribute

Simple and flexible
- Edges between vertices of two different graphs
- Edges between edges of two different graphs

A lot of joining

Spoﬁzz
summit201s

|

ldea 2:

Make joins fast

Spoﬁ?

summitzo1s

|

Co-located loading

Join is faster for co-partitioned RDDs

- Spark only has to fetch one partition

Even faster for co-located RDDs

— The partition is already in the right place

When loading attributes we make a seemingly
useless join that causes two RDDs to be co-located

S‘s’u%rml too15

|

Co-located loading

val attributeRDD =
sc.loadObjectFile[(ID, T)](path)

Co-located loading

val rawRDD =
sc.loadObjectFile[(ID, T)](path)

val attributeRDD =
vertexRDD.join(rawRDD) .mapValues(. 2)

Spoﬁzz
summit201s

|

Co-located loading

val rawRDD =
sc.loadObjectFile[(ID, T)](path)

val attributeRDD =
vertexRDD.join(rawRDD) .mapValues(. 2)

attributeRDD.cache

Spoﬁzz
summit201s

|

Scheduler delay

What's the ideal number of partitions for speed?

At least N partitions for N cores, otherwise some
cores will be wasted.

But any more than that just wastes time on scheduling
tasks.

Spoﬁzz
summit201s

|

Scheduler delay

sc.parallelize(1 to 1000, n).count
400

300 J'/\J/[

3 //J
C
o
3 200 Jb\,.,Av
@
0
20 40 60 80 100

Spoﬁzz
summit201s

l Number of partitions

GC pauses

Can be tens of seconds on high-memory machines
Bad for interactive experience

Need to avoid creating big objects

Spoﬁzz
summit201s

|

Spoﬁzz
summit201s

Milliseconds

1000

750

500

250

GC pauses

sc.paralfelize(1 to 1P000000, 1).cache.count

Sorted RDDs

Speeds up the last step of the join

The insides of the partitions are kept sorted
Merging sorted sequences is fast

Doesn't require building a large hashmap
10 x speedup + GC benefit

- 2 x if cost of sorting is included

o — sorting cost is amortized across many joins
‘s:u%rmltzow

m_ enefits other operations too (e.g. distinct)

Sorted RDDs

Join performance on 4 partitions

10000 —— normal join
—— sorted
RDD join

7500

3

=

o

o 5000

2

S
2500

0 o e
7’(‘3 1500000 3000000 4500000 6000000 7500000
Spar

summitzo1s

| RDD rows

ldea 3:

Do not read/compute all the data

Spoﬁzz
summit201s

|

Are all numbers positive?

def allPositive(rdd: RDD[Double]): Boolean =
rdd.filter(_ > ©0).count == rdd.count

// Terrible. It executes the RDD twice.

Spoﬁzz
summit201s

|

Are all numbers positive?

def allPositive(rdd: RDD[Double]): Boolean =
rdd.filter(_ <= 0).count ==

// A bit better,
// but 1t still executes the whole RDD.

Spoﬁzz
summit201s

|

Are all numbers positive?

def allPositive(rdd: RDD[Double]): Boolean =
rdd.mapPartitions {
p => Iterator(p.forall(_ > 0))
}.collect.forall(_ == true)

// Each partition is only processed up to

o/ the first negative value.
‘s’u%rml t2015

|

Are all numbers positive?

def allPositive(rdd: RDD[Double]): Boolean =
rdd.mapPartitions {
p => Iterator(p.forall(_ > 0))
}.collect.forall(identity)

// Each partition is only processed up to

o/ the first negative value.
‘s’u%rml t2015

|

Prefix sampling

Partitions are sorted by the randomly assigned ID
Taking the first N elements is an unbiased sample

Lazy evaluation means the rest are not even
computed

Used for histograms and bucketed views

Spoﬁzz
summit201s

|

|dea 4:

Lookup instead of filtering for small key sets

Spoﬁzz
summit201s

|

Restricted ID sets

Cannot use sampling when showing 5 vertices
Hard to explain why showing 5 million is faster
Partitions are already sorted

We can use binary search to look up attributes

Put partitions into arrays for random access

Spoﬁzz
summit201s

|

USTRALIA

L3
" '

Restricted ID sets

Summary

Column-oriented attributes

Small number of co-located, cached partitions
Sorted RDDs

Prefix sampling

Binary search-based lookup

S‘s’u%rml too15

|

Backup slides

Spoﬁ?

summitzo1s

|

Comparison with GraphX

Benchmarked connected components
Big data payload (not interactive)
Speed dominated by number of shuffle stages

Same number of shuffles = same speed

— Despite simpler data structures in LynxKite

Better algorithm in LynxKite = fewer shuffles
Spar

- From “A Model of Computation for MapReduce”
summitzo1s

m_ enchmarked without short-circuit optimization

Comparison with GraphX

Connected component search
16000

—— GraphX
— LynxKite
no shortcut
12000 MWM —— LynxKite
3
c
o
® 8000
2
S
4000

200 450 700 950 1200

0 = ———

Stuaﬂﬁz
summit201s

' Number of edges

Comparison with GraphX

Connected component search
60000

—— GraphX
| —— LynxKite
no shortcut
45000 —— LynxKite
3
<
S
> 30000
2
S
15000
0 A P A

10000 35000 60000 85000 110000

Stuaﬂﬁz
summit201s

' Number of edges

